
SOFTWARE—PRACTICE AND EXPERIENCE, VOL. 21(11), 1221–1248 (NOVEMBER 1991)

Fast String Searching

ANDREW HUME
AT&T Bell Laboratories, 600 Mountain Ave., Murray Hill, NJ 07974, U.S.A.

AND

DANIEL SUNDAY
Johns Hopkins University / Applied Physics Laboratory, Johns Hopkins Rd., Laurel, MD 20723, U.S.A.

SUMMARY

Since the Boyer-Moore algorithm was described in 1977, it has been the standard benchmark for the
practical string search literature. Yet this yardstick compares badly with current practice. We describe
two algorithms that perform 47% fewer comparisons and are about 4.5 times faster across a wide range
of architectures and compilers.

These new variants are members of a family of algorithms based on the skip loop structure of the pre-
ferred, but often neglected, fast form of Boyer-Moore. We present a taxonomy for this family, and de-
scribe a toolkit of components that can be used to design an algorithm most appropriate for a given set of
requirements.

KEY WORDS String searching Pattern matching Boyer-Moore

1. INTRODUCTION

Searching for a string in a body of text is a fundamental concern of computer science and
applications. Yet, partially because the best algorithms presented in the literature are
difficult to understand and to implement, knowledge of fast and practical algorithms is not
commonplace. In this paper we present a taxonomy and an organizational framework for
categorizing and constructing string search algorithms, and show how the best known algo-
rithms are classified within it. We then use this taxonomy to examine the options for the
various components of a search algorithm, and compare their execution speeds on a variety
of architectures for a natural language test set. As a result, we develop new algorithms that
execute more rapidly than those previously known.

Theoretical work on string searching has focused on the worst case computational com-
plexity and the asymptotic search behavior for long strings by counting the number of char-
acter comparisons made. For the problem of searching for all occurrences of a string of m
characters in a text of n characters, we denote the number of text comparisons made by an
algorithm in the worst case as c (n ,m). An upper bound of c (n, m) ≥ 2n –m + 1 was
achieved by the Knuth-Morris-Pratt (KMP) algorithm 1 in 1977. The worst case perfor-

0038–0644/91/111221–28$14.00 Received 4 January 1991
© 1991 by John Wiley & Sons, Ltd. Revised 3 May 1991

1222 A. HUME AND D. SUNDAY

mance of the Boyer-Moore (BM) algorithm, 2 despite its astonishing speed in practice, was
initially shown to be c(n ,m) ≥ 6n .1 This has been improved over the years, finally reach-
ing a tight bound of c(n, m) ≥ (3n –n/m) by Cole. 3 A variant of Boyer-Moore designed by
Apostolic and Giancarlo 4 achieved a bound of C(n, m) ≥ 2 n – m + 1. Recently, Colussi,
Galil and Giancarlo 5 described an algorithm based on the KMP and BM algorithms where
7n/6 ≥ c(n,m) ≥ (4n – m)/ 3.

More practical investigations of string searching, such as Horspoo1 6 and Smit, 7 evaluate
algorithms by their run time as well as character comparisons, and investigate improving
performance for typical natural language text searches, rather than pathological theoretical
examples. Run time is arguably the most important metric but it is hard to measure reliably
across different applications, implementations, and environments. In these practical studies,
BM is the dominant algorithm.

In fact, Boyer and Moore described two algorithms. 2 The first, which we will call classic
BM, was used for presentation and analysis of the algorithm and became the standard refer-
ence for comparison in subsequent literature. The second, which we call fast BM, was
described as the form preferred for implementation because of its superior run time perfor-
mance. Despite this, fast BM has largely been neglected in the literature in favor of the

6 Woods 8 and Hume 9).more easily analyzed classic BM (notable exceptions are HorspooI,
Below, we describe two descendants of the fast BM algorithm: a compact portable ‘tuned’
BM, and a slightly faster but more complicated ‘least cost’ search. Both are much faster
than classic BM and set a new standard of performance for other algorithms to beat.

These new algorithms are just two members of a large family of algorithms with a com-
mon structure suggested by fast BM. After describing some user requirements that
significantly affect the selection and design of an algorithm for string searching, we present
our taxonomy for classifying string search algorithms and constructing them from a toolkit
of algorithm fragments.

2. PROPERTIES OF STRING SEARCH ALGORITHMS

For the rest of this paper, we define the string searching problem as looking for all occur-
rences of a string pat of length patlen in another string text of length textlen. For the algo-
rithms discussed, the related problem of finding the first match is a trivial adaptation. We
present algorithms in the C programming language. 10 Keep in mind that C arrays have ori-
gin 0 indexing, and so the first character of the pattern is pat [0]. Our computational model
is that text is in randomly accessible memory. The characters in text are accessed generally
in increasing order but many of the algorithms require the ability to backtrack up to patlen
characters. Some applications require an algorithm that processes text in monotonic increas-
ing order; the only such algorithm we consider is KMP.

There are several plausible metrics for measuring the speed of an algorithm. The primary
metric used in this paper is run time, or rather, the speed (in megabytes of text searched per
second) for processing a specific test set described below. Another cost metric is the num-
ber of character comparisons made with the text; but this rarely matters in practice unless
character comparisons are unusually expensive, such as with variable length encodings of
characters or if the characters are compressed or encrypted. Nevertheless, comparison
counts give a measure that is largely independent of language (and compiler) and the host
architecture. These factors make the run time metric difficult to describe analytically and
experiments are needed to evaluate it empirically. Another metric is the upper bound on the
search time in the worst case. For example, a common implementation of fast BM has an
average run time of 0 (textlen /patlen) but a worst case performance of 0 (textlen × patlen).

FAST STRING SEARCHING 1223

The worst cases involve periodicities in the text and search strings. These rarely occur in
the typical case of searching for words or variable names in English text or program source,
but are more common in some applications such as searching genetic databases where the
patterns often have cyclic subpattems. For these latter cases, and in applications with hard
real-time limits on search times, one might choose an algorithm with a good worst case
0 (textlen) run time even though it may run slower on the average. Another aspect of an
algorithm’s performance is the time needed for preprocessing pat before really starting to
search text. Although typically this time is 0 (parlen + | alphabet |) and thus negligible, it
may dominate if textlen is small or if one is only looking for the first match and it is
expected to be very close to the start of text. We do not consider preprocessing costs in this
paper.

Much of the string search literature assumes nothing about the text to be searched (some
exceptions are Horspool, 6 Kowalski and Meltzer, 11 Baeza-Yates, 12 and Sunday 13). This
may seem appropriate for a general string searching application such as the UNIX  system
tool grep, but in practice, most text searched either resembles a natural language (such as
English) or a programming language. In these domains, certain statistical properties of typi-
cal text, such as the character frequencies, are sufficiently stable that algorithms can use a
fixed distribution for them. We develop some algorithms that use character frequency infor-
mation. We also measure the stability of their run times for the cases where the assumed
distribution does not match that of text.

3. TESTING METHODOLOGY

The algorithms described in this paper had their performance measured by the following
methodology. The various algorithms were implemented in C using normal efficient pro-
gramming techniques, for example, using register variables and character pointers instead of
array indices. The test harness read the text to be searched and all the search words into
memory before timing started. The text was then searched for each word sequentially. To
gauge the dependence of the algorithms on the system type, the tests were run on a variety
of systems listed below. The code was compiled without change using the compiler options
shown below. Note that the systems were chosen as a diverse set of conveniently accessible
machines representing most modem architectures, and not as representative of all existing
systems. We deliberately used a variety of compilers, rather than using a common compiler
such as GNU’s gcc, to demonstrate that a component’s relative performance was mostly
independent of the implementation system (hardware, compiler and libraries).

system compiler description
386 cc –0 AT&T (Intel 80386)
68k lcc AT&T Gnot (Motorola 68020)
tray cc –0 Cray XMP128
mips cc -03 SGI (MIPS R3000)
spare cc -04 Sun SparcStation 2 (SPARC)
vax cc –0 VAX 8550

The test results show the speed in MB of text searched per CPU second for each system,
the average stride (step) of the skip loop through the input text and the percentage of input
text characters accessed. The latter includes the accesses to step past mismatches (jump) as
well as actual character comparisons between the pattern and the input text (crop). All the
tests used the same input text — a randomly selected 1 MB subset of words from the King
James Bible. Except for cray, the timings were all done on single-user systems with no

1224 A. HUME AND D. SUNDAY

other processes running. For each algorithm, the mean timing of three runs was used, and
the spread for these runs was recorded. The mean and standard deviation for the 37
recorded spreads are

386 spare mips vax 68k cray
spread .35% .48% .40% .39% .15% .15%

SD .15% .20% ,17% .17% .07% .06%

The standard test was to look for all occurrences of 500 unique words, 200 selected ran-
domly from the unique words in the whole bible and 300 selected from the lMB test subset.
Of the 500 words, 428 were found in the test text, with 15228 matches in all. Word lengths
varied from 2 to 16, the mean length was 6.95, and the standard deviation was 2.17. The
other timing tests, for words of the same fixed length, used groups of 200 words or so
selected randomly in the same fashion. We used the bible subset as the text to be searched
because it is more representative of natural English text than the other convenient word lists
(like dictionaries or on-line manual pages) and could be publicly released.

4. A TAXONOMY

The algorithms described here have a common structure: a repeated loop through a sequence
of positions in the text being searched, and testing whether the pattern does or does not
match the text at each position.

for i over text do
begin

skip loop
match (text [i] with pat) comment fail at text
i : = i + shift(i,p)

end

[i+p] #pat [p]

Starting at a given position in the text, there is first a skip loop (Boyer and Moore referred to
this as the ‘fast loop’) which quickly skips past immediate mismatches in the text. When a
possible match position is found, a match algorithm compares pat against text at that posi-
tion. Finally, independent of whether a match is found, a shift function of the indices i and p
where text [i +p] #pat [p] in the match test, increments the current search point in text. The
shift is always positive and the algorithm progresses until it reaches the end of the text. We
consider the following kinds of skip loop in detail in section 4.1.

Skip Loop Components
none the skip loop is omitted from the algorithm
sfc search for first (leftmost) character in pat
s f c search for least frequent character in pat
fast search for last (rightmost) character in pat (fast BM)
ufast portable, unrolled variant of fast
lc least cost frequency dependent variant of ufast

The match component is an algorithm comparing pat with text. This algorithm has to test
each character in the pat against its corresponding text character in some specific order. The
order of comparison is significant; and some scan orders may have hardware or system sup-
port. Additionally, there may be a special guard test before the full match algorithm. The
guard is simply a test for a match with a specific (low frequency) character before starting
the full match, and can occur with any match scan order. We indicate the presence of a

FAST STRING SEARCHING 1225

guard test by adding a ‘ + g ’ suffix to the component name. Since the om scan already incor-
porates the guard notion, it has no guard version. We consider the following match algo-
rithms in detail in section 4.2.

Match Algorithm Components
fwd forward linear scan (left to right)
rev reverse linear scan (right to left)
om optimal mismatch ascending frequency order

order to maximize sd2 shift component
fwd+g test guard before fwd scan
rev+g test guard before rev scan
ms+g test guard before ms scan

ms

The final component, the shift function, cannot be arbitrarily mixed with other compo-
nents. For example, using d2 below depends on (i +p) being the rightmost mismatch; thus
the rev match must be used. We consider the following shift functions in detail in section
4.3.

Shift Function Components
inc 1
kmp KMP’s next(p)
d1 BM’s delta 1 (text [i+p])
d2 BM’s delta 2 (p)
d12 BM’s max(delta 1 (text [i+p]), delta 2 (p))
sd1 Sunday’s DELTA , (text [i +patlen])
sd2 Sunday’s DELTA 2 (p)
md2 mini sd2 on skip character
gd2 Giancarlo’s generalized delta 2 (p)
multiple use a combination of several other shifts

One easy way to combine multiple shifts is to take their maximum, which we denote by
joining them with the ˆ operator; for example, d12 can be written d 1 ˆd2.

An example might make our schema clearer. First, we note that while lower case italics
are used for the names of components, full algorithms built out of components have capital-
ized names. The classic BM algorithm, denoted as BM.ORIG and shown below, is described
by the triple (skip = none, match = rev, shift = d12 = d 1 ˆ d 2), or more tersely by
{ none | rev | d 1 ˆ d 2].

i = patlen–1;
while (i < textlen) { /* i scans thru the text */

/* no skip loop */
/’ reverse match test */
for (p = patlen–1; (p >= 0) && (pat [p] == text [i]); p--)

i––;

if(p < 0){ /* match at text [i+1] */
}
/* dlˆd2 shift */
i += max(delta1 [text [i]] , delta2 [p]) ;

}

Some more sample classifications are drawn from the literature:

1226 A. HUME AND D. SUNDAY

Algorithm skip loop match shift
KMP 1 none fwd kmp
BM.ORIG 2 none rev d1ˆd2
BM.FAST 2 fast rev d1 ˆ d2
SFC 6 sfc inc
SLFC 6 slfc fwd inc
QS 13

none fwd sd1
MS 13 none ms sd1 ˆ sd2
OM 13 none sd1 ˆ sd2
LFOC 11 slfc fwd+g inc

Below, we describe the implementation and performance for the components mentioned
above.

4.1 Skip loops

4.1.1 none
This is the easiest and slowest skip loop to program, although selection of a good shift

function, such as the BM delta 1 or the Sunday DELTA1, can partially compensate for the
speed loss. The simplest algorithm exemplifying this is Sunday’s QS, ‘quick search’, which
is { none |fwd | sd 1 }.

4.1.2 sfc
Horspool described a SFC

looks for the first character
speed, are

sfc
ch = pat [0];
text [textlen] =
i = 0 ;

(‘Search First Character’) algorithm, 6 a simple skip loop that
of pat. The outer and skip loop, after adding a sentinel for

ch; /* install sentinel */

while (i < textlen–patlen) {
while (text [i] != ch) /* skip loop */

i++;
if (i >= textlen) break;
match(pat [1..], text [i+ 1..]);
i += shift(i,p);

}

As this skip loop is often supported in hardware, we also measured sfcm, a version that uses
the C library routine memchr to find ch. Although memchr is presumably as efficient as
possible, all of the compilers we measured made a subroutine call to memchr rather than
inserting the code inline.

4.1.3 slfc
Horspool also described a variant of sfc called SLFC (‘Search Least Frequent Character’).

It uses the frequency distribution of text to search for the least frequent character in pat,
rather than the first character. Kowalski and Meltzer also applied this idea in their LFOC

(‘Least Frequently Occurring Character’) algorithm. 11

FAST STRING SEARCHING 1227

slfc
ch = pat [rare] ; /* least frequent char of pat */
text[textlen] = ch; /* sentinel */
i = rare;
while (i < textlen–patlen+rare) {

while (text[i] != ch) /* the skip loop */
i++;

if (i >= textlen) break;
match(pat [0..], text [i–rare..]);
i += shift(i,p);

}

The slfcm variant uses memchr to find ch.

4.1.4 fast
This is the first of three components based on the fast implementationof the Boyer-Moore

algorithm. Boyer and Moore reported that most of the execution time of a string search is
spent moving the pattern past immediate mismatches. They described a modified algorithm,
which we call BM.FAST, with an initial ‘fast loop’ that quickly skips past these mismatches.
To prevent two tests in the skip loop, one for end of text and one for a possible match, this
loop uses delta 0, identical to Boyer-Moore’s delta 1 except that delta 0 [pat [patlen –1]]
contains a sentinel value LARGE (> textlen + patlen) that causes the skip loop to halt when a
possible match position occurs. The earliest C implementations known to us were King and
Macrakis 14 in 1985 (part of GNU emacs) and Woods 15 in 1986 (a new version of grep).
For performance reasons, the code is written with character pointers rather than array refer-
ences; the outer and skip loops are

;

fast
s = text + patlen – 1;
e = text + textlen;
while (s < e) {

while ((s += d0 [*s]) < e) /* skip loop */

if (s < e+patlen) /* end of text */
break;

–= LARGE;
match(pat [0..patlen – 2] ,text [s –patlen + 1..s– 1]);
i += shift(i,p);

}

s

Most C compilers, with optimizing enabled, generate very good code for this fast skip loop.
For example, on the vax, it is four machine instructions.

4.1.5 ufast
Using the LARGE value in fast as a sentinel to break out of the skip loop causes problems

on segmented architectures and with arithmetic overflow on pointer addition. In addition,
the new C standard 16 specifies pointers may be compared only if they point inside or just
after the same array of characters. These problems are both avoided by an alternate scheme
devised by Haertel 17 for the Free Software Foundation’s egrep, although his primary moti-

1228 A. HUME AND D. SUNDAY

vation was to support loop unrolling.
18 It uses a sentinel of zero (and thus is identical with

BM’s delta 1); the skip loop becomes:

k = 0 ;
while ((k = d0[*(s += k)]) && (s < e))

if (s >= e)
break;

Unfortunately, because of the double test, this runs a little slower than the fast loop. The
speed can be recovered by a couple of standard tuning tricks such as described by Bentley. 19

We can remove one test by inserting patlen copies of pat [patlen – 1] at text [textlen] and so
only need to test for the end of text when k is zero. We can gain speed by amortizing the
loop overhead by unrolling the loop as it is harmless to repeat the step statement k =
d0 [* (s += k)] after we hit a potential match (when k = 0). The benefits of unrolling are
substantially dependent on the length of the patterns and the system design, for example, the
size of the instruction cache. After measuring different unrolling factors (with match= fwd,
shift= inc), we picked 3-fold unrolling as the best compromise across systems.

Algorithm
Execution Speed (MB/s) Statistics

386 spare mips vax 68k cray step cmp+jump
unroll1 1.81 6.83 11.91 5.30 4.02 8.37 5.22 202620 (20.3%)
unroll2 2.42 7.06 12.45 5.63 4.12 9.05 5.08 207753 (20.8%)
unroll3 2.66 7.12 12.54 5.84 4.20 9.21 4.95 213048 (21.3%)
unroll4 2.79 7.08 12.48 5.84 4.20 9.16 4.82 218468 (21.8%)
unroll5 2.84 7.00 12.39 5.87 4.15 9.04 4.69 224007 (22.4%)
unroll6 2.86 6.92 12.25 5.79 4.11 8.90 4.57 229648 (23.0%)

This finally gives us the ufast skip loop

ufast
s = text + patlen – 1;
e = text + textlen;
memset (e, pat [patlen–1] , patlen) ;
while (s < e) {

k = d0 [*s];
while(k) {

k = d 0 [* (s + = k)] ;
k = d 0 [* (s + = k)] ;
k = d 0 [* (s + = k)] ;

}
if (s >= e)

break;
match(pat [0..patlen –2], text [s –parlen + 1 ..s – l]);
s += shift(s, p);

}

4.1.6 lc
While investigating the performance of the algorithms described in this paper, it became

clear that a large part of the performance of the fast BM algorithms depends on how long the
algorithm stays in the skip loop. Since the pattern can be scanned in any order, we suddenly

FAST STRING SEARCHING 1229

realized that the skip loop character could be any character of the pattern, and not necessar-
ily pat [patlen – 1] as in fast. Having a skip character near the end of the pattern gives large
skips, but it might be better to choose a lower frequently character and stay in the loop
longer, even though each skip is a bit smaller. Consider searching for the word ‘baptize’ in
English text. Quite often, the ‘e’ will match and we will break out of the skip loop, and then
do the match and shift before going back to skipping. However, if the skip loop was look-
ing for the ‘z’, it would skip a little less on each iteration of the loop, but would almost
never break out of the skip loop, and would thus run faster.

The algorithm that we describe here estimates the search cost associated to each character
of pat, and selects the one with the least cost for the skip loop. Matsumoto 20 has also devel-
oped a scheme to first search for a subpattern of pat which minimizes the search cost, but
the details of how he estimates this cost are not known to us.

We measured the possible benefits of this scheme by recording the execution times on the
mips system for looping on pat [patlen – 1 – offset] where 0 ≤ offset < min (12 ,patlen).
Figure 1 shows group statistics of the fastest offset loop, when offset ≠ 0, for sets of 200
words of lengths 4 through 13 (lengths 1, 2, and 3 were always fastest with offset = 0). The
top graph shows the distribution of speed ups over fast (with offset = 0) measured for vari-
ous values of offset and patlen. It has points for the minimum and maximum, a box
between the 25% and 75% quartiles and a mark on the median. The bottom graph shows the
fraction of all words fastest at a particular offset, excluding offset = 0 which accounts for the
balance.

The potential benefit of lC seems small but significant. Even though the average benefit is
small (about 3-5%), there are occasional speedups of almost 15%. For the case of alphabets
with a small variance in the character frequencies, we would expect lc to be less effective.
Otherwise, for the case of very long patterns, we expect lC to be more effective as there is
more chance of using a low frequency character, and differences in skip size for different
characters decrease toward the end of long patterns.

Constructing a skip loop for a particular character, say pat [j], is straightforward; simply
calculate delta 0 as though pat was only j + 1 characters long. This means that the sentinel is
now d 0 [pat [j]] = 0, and one must add patlen copies of pat [j] to the end of the text so that
the search will terminate correctly.

To select the best skip character, we need to estimate the cost of running the algorithm,
measured as execution time, for each pat [j], 0 ≤ j <patlen, and choose the j that gives the
‘least cost’. Let cj denote pat [j], p(c) be the probability that c occurs in the input text,
Pj = p(cj), t I be the time for one skip loop iteration, and tm, be the average time to deter-
mine if a match really occurred and then shift before restarting the next skip loop. Next, for
a skip loop on cj, let sdj be the expected skip distance (step) per mismatch. The total
expected number of skip loop iterations can be estimated by esj

textlen
e sj =

s dj

Also, the expected number of possible match positions is estimated as emj

textlen × Pj
e mj = s dj

Then, the expected time (etj) to process the whole text is given by

t ex t l en (tl+ tm P j)
e tj = t l e sj + t m e mj = s dj

1230 A. HUME AND D. SUNDAY

Figure 1. Potential benefits of a least cost algorithm

Let t s low = tm/tl. The normalized time to search the whole text is ntj

e tj
1 + Pj × tslow

nt j = =
tl × textlen s dj

We then select the skip loop on the ck for which ntk is minimum.
To evaluate nt j, we need the values of Pj, tslow, and sd j. Pj is given by the character fre-

quency distribution for the input text. Most often, this will be approximated by a distribu-
tion empirically derived by measuring a sample of prototypical text; for example, a sample
of English text.

The value of tslow must be measured by running a calibration program; it depends on the
choice of skip loop, match algorithm, shift function, compiler, and hardware architecture.
We measured tl and tm

by running { ufast | fwd | inc } with delta 0 set to all 1‘s and all 0’s
respectively. In the former case, we stay in the skip loop until the end of text. In the latter
case, the skip loop always broke immediately, and was never executed. In both cases, there
were textlen iterations executed, and tslow was simply computed as the ratio of the two times
measured. The measured values are

FAST STRING SEARCHING 1231

386 spare mips vax 68k cray

t s l o w = 4.91 3.04 3.29 3.86 2.97 3.34

It is possible to derive a fomal estimate for sdj (see Schaback 21 and Baeza-Yates 12). On
the other hand, it is easy and more accurate to derive these values directly from text itself.
The method that gave us the most reliable estimates for the sd j involved running a large
number of searches on text and measuring the actual shifts that occurred. The mean and
standard deviations for sdj are

j m(sd i) S D (s d j) | j m(sd j) S D (s dj) | j m(sd j) SD(sd i)
0 1.00 0.00 5 5.29 0.19 10 8.65 0.40
1 1.96 0.03 6 6.02 0.25 11 9.25 0.43
2 2.85 0.06 7 6.73 0.29 12 9.88 0.49
3 3.73 0.09 8 7.40 0.35 13 10.55 0.54
4 4.54 0.14 9 8.03 0.35 14 11.04 0.79

These values are roughly comparable to the theoretical ones given by Schaback. The differ-
ence might be attributed to the alphabet, since we used a larger one with different character
frequencies, or to higher-order statistical properties of text. In any case, estimates for the
sdj values are always going to be sloppy since the observed standard deviation is large and
appears to keep increasing with j. However, the difference between successive sd j values
decreases as j increases and we can show theoretically that the mean sd j approaches an
upper bound of (| alphabet | – 1). Asymptotic behavior of the standard deviation is unknown
to us.

Finally, we checked how well our model for estimating ntj performed on our test set. As
measured on mips, for 89.3% of the test set, the speed of the predicted offset was the opti-
mal speed. For 99.0% of the test set, the speed of the predicted offset was at least as fast as
offset = 0, that is, at least as fast as fast and ufast.

4.1.7 Summary
The performance figures for the various skip loop components were measured with

match=fwd and shift= inc (so as to maximise the work done by the skip loop). Here, as in
the other summaries below, different match and shift components would yield slightly dif-
ferent numbers.

Algorithm
Execution Speed (MB/s) Statistics

386 spare mips vax 68k cray step cmp+jump
none 0.15 1.09 2.50 0.57 0.47 0.78 1.00 1041392 (104.1%)
sfc 0.58 2.99 6.09 1.83 1.36 2.28 1.00 1041397 (104.1%)

sfcm 0.97 1.77 4.24 3.13 0.92 2.84 1.00 1041397 (104.1%)
slfc 0.62 3.18 6.27 1.92 1.43 2.39 1.00 1023043 (102.3%)

slfcm 1.29 1.90 4.54 4.08 1.07 5.23 1.00 1023044 (102.3%)
fast 2.42 6.73 10.92 5.13 3.41 7.68 5.22 202619 (20.3%)
ufast 2.66 7.11 12.52 5.81 4.21 9.21 4.95 213048 (21.3%)

lc 2.27 7.13 12.57 5.71 4.28 9.23 4.93 212909 (21.3%)

Provided the preprocessing to find the least frequent character is not onerous, slfc is better
than sfc. The benefits of using the memchr library routine are quite system specific. For
example, there are no special character search/compare instructions on the Cray. Rather, the
routines are vectorized to handle the text a word at a time instead of a character at a time,
and is slower unless the least frequent character occurs sufficiently infrequently for the vec-
torizing to help.

1232 A. HUME AND D. SUNDAY

The BM derived skip loops (fast, ufast, and lc) are clearly superior. The ufast loop seems
the best balance between ease of coding, portability, and optimal performance. The lc loop
has a more complicated preprocessing routine; it runs a little faster on average and occasion-
ally is substantially faster.

There are additional fine tuning refinements that may be architecture dependent. One
such variant changes the type of the d0 skip table from int to char. As shown below, this
runs faster on the two RISC architectures (mips, sparc) but slower on the others.
Examination of the generated code reveals that the mips code had shrunk by one instruc-
tion because it no longer had to multiply the index by 4 to get a byte address for a skip table
entry. The vax code, on the other hand, grew because it cannot add a byte to an integer
directly. The following execution times were for match= fwd and shift= inc.

Algorithm
Execution Speed (MB/s) Statistics

386 sparc mips vax 68k cray step cmp+jump
ufast 2.66 7.11 12.52 5.81 4.21 9.21 4.95 213048 (21.3%)

ufast+c 2.40 7.68 13.57 5.07 3.85 7.46 4.95 213048 (21.3%)
lc 2.27 7.13 12.57 5.71 4.28 9.23 4.93 212909 (21.3%)

lc+c 2.14 7.71 13.62 4.54 3.89 7.47 4.93 212909 (21.3%)

4.2 Match Algorithms

In this section, we describe different techniques for determining if pat fully matches text at
its current position. After all but the none skip loop we know that a particular text character
already matches; most match algorithms can use this information. The choice of match
algorithm is often dependent on the shift function one wants to use. Some shifts, for exam-
ple d1 and d2, require knowing the rightmost mismatch point, and so one must use the rev
match.

4.2.1 fwd
The most straightforward match algorithm simply compares pat [k] with text [i+ k] for

k = 0 , l ,... ,patlen – 1, yielding the leftmost mismatch. If any characters, such as the skip
or guard (see below) character, are known to match at the beginning (or end) of pat, then the
bounds are adjusted accordingly. However, if a known matching character is in the middle
of pat, it may be faster to compare the whole of pat instead of comparing the disjoint parts
before and after the matching character(s). This is particularly true when there is special
system support
instructions for
memcmp.

4.2.2 rev

for fwd, either as library routines such as C’s memcmp or even hardware
character comparison. We also timed fwdm, the version of fwd that uses

The reverse match algorithm rev is the obvious counterpart fwd, scanning pat backward
(k = patlen – 1 ,..., 1,0), and yielding the rightmost mismatch. If any characters, such as the
skip or guard character, are known to match at the beginning (or end) of pat, then the
bounds are adjusted accordingly. It is rare for a system to have special support for reverse
character comparison.

FAST STRING SEARCHING 1233

4.2.3 om
As observed by Kowalski and Meltzer, 11 Baeza-Yates, 12 and Sunday, 13 given the alpha-

bet frequency distribution, we will minimize the expected number of match comparisons if
they are done in ascending frequency order. However, the implementation normally
involves indirection and runs slower on some architectures. Sunday’s implementation used
the following structure

struct {
int loc;
char c; /* c == pat[loc] */

} om[MAXLEN] ;

where om [] represents the pattern sorted in increasing frequency order. Let s point at the
text position text [i] corresponding to pat [0]. Then the om match can be coded as

om
for (p = om; p < om+patlen; p++) {

if (p–>c != s [p–>loc])
goto mismatch;

}
/* match found */

mismatch:
i += shift (i, p–>loc) ;

4.2.4 guard
For our test set, the average number of characters compared in the above om loop is 1.05.

Thus, we can gain 95% of the benefits of the om match by simply testing for the rarest char-
acter of the pattern first before doing a full match test. This ‘guard test’ is a simple piece of
code. The preprocessing step determines rarest such that par [rarest] is the par [k] (other
than the skip loop character) with lowest frequency value. Then, the guard test is

guard
if (text [i+rarest] ! = pat [rarest])

goto mismatch;
match

Except for being different than the skip loop character, the guard is independent of the skip
loop and match algorithm and can be combined with any other match algorithm, although it
is redundant with om. A guard is denoted by ‘+ g‘, so fwd + g is a guard test before a fwd
match scan. Use of the guard generally abrogates properties of the match algorithm such as
knowing the rightmost mismatch.

Subsequent to our discovery of the guard, we found an earlier reference to the use of a
guard in Kowalski and Meltzer’s LFOC algorithm. 11 They also discuss the notion of multiple
guards which extends naturally into the om algorithm.

4.2.5 ms
The maximal shift algorithm 13 ms uses a scan order that gives the largest possible sd2

shifts. It seems only effective for long patterns and thus we do not consider it further,
except to note that the match function would be coded similarly to the om match test. One
can also add a guard for a ms+g match test.

1234

4.2.6 Summary
The match algorithms

loop and simplest shift).

A. HUME AND D. SUNDAY

were measured with skip= ufast and shift= inc (the preferred skip

Execution Speed (MBIs) Statistics
Algorithm . .

386 sparc mips vax 6 8 k cray step cmp+jump
fwd 2.66 7.11 12.52 5.81 4.21 9.21 4.95 213048 (21.3%)

fwdm
rev

fwd+g
fwdm+g

rev+g

om

2.59 6.56 12.14 4.78 3.23 8.31 4.95 213048 (21.3%)
2.66 6.97 12.60 5.80 4.14 9.09 4.95 215464 (21.5%)
2.32 7.06 12.37 5.78 4.15 9.48 4.95 212791 (21.3%)
3.04 7.30 12.64 6.10 4.35 9.67 4.95 203226 (20.3%)
3.04 7.25 12.85 5.87 4.12 9.57 4.95 203226 (20.3%)
3.04 7.30 12.65 6.12 4.34 9.66 4.95 203425 (20.3%)

The fwdm match using memcmp is uniformly inferior, which is not surprising as the average
number of characters compared was measured to be 1.08. Fwd and om have similar perfor-
mance but fwd is preferred as it is easier to implement. Moreover, combining fwd with a
guard is a clear winner.

4.3 Shift functions

In this section, we describe different techniques for determining how far to shift position in
the text after we finish the match loop. Important characteristics of a shift function are worst
case performance, the cost of preprocessing, and assuming that match establishes
text [i +p] #pat [p] when it fails, what properties of i and p are needed. Only kmp, d2 (and
combinations of d2 such as d12), and gd2 guarantee linear worst case performance. Sd2 is
conjectured to have linear worst case performance. The other functions have a worst case
performance of O (textlen × patlen).

4.3.1 inc
This simply increments the current text pointer by one. It uses neither i nor p, and can be

used with any skip loop and match algorithm. With skip= none and match= fwd, using inc
yields the obvious (and slow) straightforward algorithm used by many programmers. How-
ever, with a non-null skip loop, the bulk of the text is scanned by the loop and the shift func-
tion is of less importance. In this case, inc is a good choice because it executes so quickly.

4.3.2 kmp
The Knuth-Morris-Pratt 1 shift function kmp requires knowing the leftmost mismatch. If

text [i + p] is the leftmost mismatch, then the characters text [i.. i +p – 1] match
pat [0 ..p – 1]. We can thus shift pat right by the minimum amount k such that
pat [0..p – 1 – k] is matched with the prior pat [k..p – 1] which was aligned with
text [i+ k.. i +p – 1], and a new character is brought into position with text [i +p]. These
shifts kmp [p] can be computed from pat as a preprocessing step before the search begins.

If one wants to preserve the linear behavior of kmp, one needs to use a variant of fwd that
avoids backtracking in text by starting at the previous mismatch location. This fwd variant
with the kmp shift is the original KMP algorithm, which is known to be slower than classic
BM ,7 and so we do not consider kmp in this paper.

FAST STRING SEARCHING 1235

4.3.3 dl
This is the BM delta 1 and requires knowing the rightmost mismatch in pat. The initial-

ization of delta 1 is

for(c = 0; c < alphabetize; c++)
d1 [c] = patlen;

for(i = O; i < patlen; i++)
d1[pat [i]] = patlen–1–i;

If the rightmost mismatch is between pat [p] and text [i +p], then the actual BM delta 1 pat-
tern shift is delta 1 [text [i +p]] – (parlen – 1 –p). When this is < 0, 1 must be used. The
shift is

i += max (d1 [text [i+p]] , patlen–p) ;

4.3.4 d2
This is the BM delta 2 and requires knowing the rightmost mismatch in pat. It is an adap-

tation of the kmp shift from the fwd to the rev match scan. Using d2 also gives a linear
bound on the worst case search behavior, although this bound is worse than kmp’ s since it
cannot avoid retesting already matched input. However, it will usually give larger shifts
than kmp. Initializing the d2 table in O (patlen) time is nontrivial; the algorithm in KMP 1

gives incorrect shifts, the algorithm in Smit7 does not give optimal shifts and the algorithm
in Sunday 13 runs in O (patlen 2) time. We based ours on Rytter. 22

4.3.5 d12
This is the shift function used by Boyer and Moore. It is simply the maximum of delta,

and delta 2 as defined above:

i += max(d1 [text [i+p]] , d2 [p]) ;

Because the delta 2 shift is always > 0, we need not worry about the d1 shift being < 0.

4.3.6 sd1
Sunday 13 observed that in algorithms based on BM, given that the right hand end of pat

is aligned with text [i +patlen – 1], then some character in the next position of pat must
align with text [i +patlen], and thus we can define a shift function DELTA 1 based on
text [i +patlen]. DELTA I is computed as (delta I + 1) but its application is independent of
p, and unlike d1, the shift is always > 0, and can be used directly:

i += sd1 [text [i+patlen]] ;

This shift is noteworthy because it does not depend on any information from the match test
and thus, arbitrary and nonsequential scan orders can be used with it.

4.3.7 sd2
This is Sunday’s generalization 13 of the BM delta 2 for a match algorithm using an arbi-

trary scan order of the pattern. Sunday conjectures that sd2 ensures linear worst case search
behavior. For match= fwd (or rev), it is the same as shift= kmp (or d2), and so we do not con-
sider it here. For the patterns considered in this paper, a condensed version of sd2 (md2) is
sufficient.

1236 A. HUME AND D. SUNDAY

4.3.8 md2
If we use a skip loop (other than none), then text [i + k] =pat [k] where pat [k] is the skip

loop character. A mini sd2, or md2, shift aligns the rightmost occurrence of pat [k] left of
pat [k] with text [i + k]. If there isn’t one, the shift is k + 1. This shift is simple to precom-
pute and should always outperform inc since it is as easy to apply but typically will be much
greater than 1 and roughly equal to sdk, the distance that the skip character must skip to
match itself. On average (for our test set), patlen 7, k 6 and md2 = 6.23, which is close to
sd6 =6.06. A corresponding shift can also be defined when multiple characters are known
to match, such as the skip and guard characters, but we have not investigated this case.

4.3.9 gd2
The gd2 shift is a generalization of the delta 2 shift by Giancarlo. 23 It incorporates the

delta, character heuristic into BM’s delta 2 heuristic. The BM delta 2 brings a new pattern
character different from pat [p] into correspondence with the text char text [i +p] at which
the mismatch occurred, since if it was the same as the previous one it would just mismatch
again. Giancarlo’s shift extends this by having the new character be exactly the same as
text [i +p] since we already know it. To do this, one needs to have an array of shifts
indexed by the mismatch position p, and the text alphabet character a at that position. Let
m = patlen; then

gd2 [p][a] = m– 1 –p + min { k|(k>0)

and ((k>i) or (pat [i– k..m– 1 –k]= pat [i..m- 1], for p<i<m))

and ((k>p) or ((pat [p –k] =a)#pat[p])) }

This function is computed in O (m | alphabet |) time and space; the preprocessing time is
substantially greater than the other shift functions. It is easy to show
gd2 [m– 1][a]= delta 1 [a], and gd2 [p][a] 2max (delta 1[a], delta2 [p]) for O<p<m– 1.
The gd2 shift function performs well on our test set, but as we shall see below, is astonish-
ingly fast for long patterns.

4.3.10 multiple
If one shift is good, then perhaps combining two or more shifts, for instance by using

their maximum, would be better. In general, it seems not; the overhead involved in doing
this appears to destroy any advantage one gains in isolated instances. This can be seen in
timing comparisons of the d 1 ˆ d2 (= d 12) or sd 1 ˆ md2 shifts and is true whether the maxi-
mum is calculated at execution time with if statements or by a precomputed two-
dimensional array.

4.3.11 Summary
A small example illustrates the difference between some of these shifts. Suppose we are

searching for the word contention where the skip character is the final n. Using the rev
match, we find a mismatch at i. For the text below, the resulting different shifts are

FAST STRING SEARCHING 1237

contention
usurped the throne

content ion inc = 1
contention dl(r)= 8

contention d2(7)= 7
contention sd1(e)= 6

contention md2= 4
contention gd2(7,r)= 1 0

One interesting shift we did not evaluate is that described by Baeza-Yates. 12 It is similar
to the lC skip loop but applied to the shift function rather than to the skip loop and mini-
mizes j (l – Pj) rather than ntj.

The following timings for the shift component have skip= ufast and match=rev(thepre-
ferred skip loop and some of the shifts need a rightmost mismatch).

Algorithm

inc
d1
d2

d1ˆd2
sd1
md2

sd1ˆmd2
gd2

Execution Speed (MB/s)
386 sparC mips vax 68k cray
2.66 6.97 12.60 5.80 4.14 9.09
2.01 6.82 12.46 5.56 4.02 8.84
2.05 6.84 12.36 5.57 3.99 8.82
2.44 6.80 12.32 5.49 3.88 8.88
2.68 7.02 12.72 5.87 4.18 9.11
2.72 7.19 12.96 5.97 4.31 9.46
2.70 7.06 12.78 5.91 4.21 9.21
2.44 6.93 12.47 5.44 3.89 8.85

Statistics
step cmp+jump
4.95 215464 (21 .5%)
5.12 218923 (21 .9%)
5.00 223531 (22.4%)
5.14 218203 (21.8%)
5.22 204908 (20.5%)
5.18 216368 (21.6%)
5.25 203401 (20.3%)

 the shifts and systems we measured, md2 is the fastest shift. It is fast and compact,
easy to precompute as a constant, and minimizes overhead in the search loop.

5. RECOMMENDED SEARCHING ALGORITHMS

For general purpose use, we recommend the two algorithms TBM and LC described below.
Their components were selected as consistent front runners across the board on all the archi-
tectures we evaluated. Their C implementations are reproduced in Figures 2 and 3 and are
structured as a preprocessing and an execution routine. The text frequency distribution and
values for the sdi are not shown. The C source is also available electronically (see the next
section for details).

The TBM (Tuned Boyer-Moore) algorithm is { ufast | fwd + g | md2 }. It is compact and
fast and can be made independent of frequency data by eliminating the guard.

The LC (Least Cost) algorithm is { lC | fwd + g | md2 }. It differs from TBM only in the
skip loop used; the lC loop makes it a bit faster in some instances. When no text frequency
data is available, this reduces to TBM.

Algorithm Execution Speed (MB/s) Statistics
386 sparc mips vax 68k cray step cmp+jump

TBM 3.11 7.51 12.98 6.25 4.53 10.08 5.18 204199 (20.4%)
TBM-g 2.72 7.32 12.89 5.98 4.39 9.58 5.18 214008 (21.4%)

LC 2.45 7.54 13.10 6.31 4.57 10.06 5.16 204592 (20.5%)

When comparing these numbers to the previous ones for ufast and lc, the reader will note
some anomalies. Unfortunately, the statistics for any algorithm cannot be deduced from the
sum of the components, since they are perturbed in combination. For example, the LC skip

1238 A. HUME AND D. SUNDAY

#include “ f req. h“

#define ASIZE 256

static struct
{

int patlen;
unsigned char pat[1024];
long delta[ASIZE];
int rarec, rareoff, md2;

} pat;

void prep(unsigned char *pb, int len)
{

register unsigned char *pe, *p;
register int j, r;
register long *d;

pat.patlen = len;
assert(pat.patlen < sizeof(pat.pat)); /* true or abort */
memcpy(pat.pat, pb, pat.patlen) ; /* store pattern */
/* get skip delta */
for(j = 0, d = pat.delta; j < ASIZE; j++)

d[j] = pat.patlen;
for(pe = pb+pat.patlen–1; pb <= pe; pb++)

d[*pb] = pe–pb;
/* get guard */
r = 0 ;
for(pb = pat.pat, pe = pb+pat.patlen–1; pb < pe; pb++)

if(freq[*pb] < freq[pat.pat[r]])
r = p b – pat.pat;

pat.rarec = pat.pat[r];
pat.rareoff = r – (pat.patlen–1);
/* get md2 shift */
for (pe = pat.pat+pat .patlen-1, p = pe–1; p >= pat.pat; p––)

if(*p == *pe) break;
/* *p is first leftward reoccurrence of *pe */
pat.md2 = pe – p;

}

int exec(unsigned char *base, int n)
{

register unsigned char *p, *q, *e, *s, *ep;
register long *d0 = pat.delta;
register k, n1 = pat.patlen–1, nmatch = 0, md2 = pat.md2;
register ro = pat.rareoff, rc = pat.rarec;

s = base+pat.patlen–1;
e = base+n;
ep = pat.pat + pat.patlen–1;
memset(e, pat.pat [pat.patlen–1] , pat.patlen); /* sentinel */

Figure 2A. The code for TBM

}

FAST STRING SEARCHING 1239

/* ufast skip loop */
while(s < e) {

k = d0 [*s];
while(k) {

k=d0[*(s+= k)];
k=d0[*(s+= k)];
k=d0[*(s+= k)];

}
if(s >= e)

break;
if(s[ro] != rc) /* guard test */

goto mismatch;
for(p = pat.pat, q = s–n1; p < ep;){ /* fwd match */

if(*q++ != *p++)
goto mismatch;

}
nmatch++;

mismatch:
s += md2;

}
return(nmatch) ;

/* md2 shift */

Figure2B. The code for TBM

loop is more likely to loop on the least frequent character of par than in TBM, and thus
choose a less effective guard character.

Although reconsider TBMand LC the best general purpose algorithms, they may not be
optimal for a particular architecture. To illustrate this, we show below the fastest programs
we found for each of the systems we tested. Note that we did not test every possible combi-
nation of components, just the promising ones as indicated by the component summary
tables.

Algorithm Execution Speed (MB/s) Statistics
386 sparc mips vax 68k cray step cmp+jump

TBM 3.11 7.51 12.98 6.25 4.53 10.08 5.18 204199 (20.4%)
LC+c 2.33 8.15 14.20 5.47 4.17 8.07 5.16 204592 (20.5%)

LC 2.45 7.54 13.10 6.31 4.57 10.06 5.16 204592 (20.5%)

If you want the fastest program for your system, you need to go through the same process of
measuring the individual components and then measuring various combinations of the best
components. To facilitate this, we have made a toolkit of the components described above
available electronically. The authors would like to know about the best programs for vari-
ous systems and about any new components, preferably by sending details by electronic
mail to either andrew@research.att.com or dan@aplexus.jhuapl.edu.

6. GETTING THE CODE

All the programs, word lists and most of the testing apparatus used in this paper are avail-
able electronically via ftp (login as user netlib on research.att. com) or nelib. 24

Netlib works by sending electronic mail messages to a server. For example, the message

send index

1240 A. HUME AND D. SUNDAY

#include “freq.h”
#include “sd.h”

#define ASIZE 256

static struct
{

int patlen;
unsigned char pat[1024];
int loopoffset; /* loop on pat[patlen-1-loopoffset] */
long delta[ASIZE];
int rarec, rareoff, md2;

} pat;

void prep(unsigned char *pb, int len)
{

register unsigned char *pe, *p;
register int j, r, rr;
register long *d;
double tmax, f;
extern double tslow;

pat.patlen = len;
assert(pat.patlen < sizeof(pat.pat)); /* true or abort */
memcpy(pat.pat, pb, pat.patlen) ;
/* get least cost skip loop char */
tmax = 2+tslow;
for(pb = pat.pat, pe = pb+pat.patlen; pb < pe; pb++){

f = (1 + tslow*freq[*pb]) / sd[pb–pat.pat];
if(tmax > f){

tmax = f;
r = pb–pat.pat;

}
}
pat.loopoffset = pat.patlen-1–r;
/* get skip delta */
d = pat.delta;
for(j = 0; j < ASIZE; j++)

d[j] = pat.patlen–pat.loopoffset;
pe = pat.pat+pat.patlen–1-pat.loopoffset;
for(pb = pat.pat; pb <= pe; pb++)

d[*pb] = pe-pb;
/* get guard != skip loop char */
rr = r;
r = 0;
for(pb = pat.pat, pe = pb+pat.patlen-1; pb <= pe; pb++){

if(((pb–pat.pat) != rr) && (freq[*pb] < freq[pat.pat[r]])
r = pb - pat.pat;

}

Figure 3A. The code for LC

FAST STRING SEARCHING 1241

pat. rarec = pat. pat[r];
pat. rareoff = r – (pat .patlen–1–pat . loopoffset) ;
/* get md2 */
pe = pat.pat+pat.patlen–1–pat .loopoffset;
for(p = pe–1; p >= pat.pat; p––)

if (*p == *pe) break;
/* *p is first leftward reoccurrence of *pe */
pat.md2 = pe – p;

}

int exec(unsigned char *base, int n)
{

register unsigned char *p, *q, *e, *s, *ep;
register long *d0 = pat.delta;
register k, t, nmatch = 0, md2 = pat.md2;
register ro = pat.rareoff, rc = pat.rarec;

t = pat.patlen–1–pat .loopoffset;
s = base+t; /* skip char position */
e = base+n;
ep = &pat.pat [pat.patlen] ; /* end of pattern */
memset(e, pat.pat[t], pat.patlen); /* sentinel */
while(s < e){

k = d0[*s]; /* ufast skip loop */
while(k) {

k=d0[*(s+= k)];
k=d0[*(s+= k)];
k=d0[*(s+= k)];

}
if(s >= e)

return(nmatch) ;
if(s[ro] != rc) /* guard test */

goto mismatch;
for(p = pat.pat, q = s–t; p < ep;){ /* fwd match */

if(*q++ != *p++)
goto mismatch;

}
nmatch++;

mismatch:
s += md2;

}
return(nmatch) ;

/* md2 shift */

}

Figure 3B. The code for LC

will cause generic information on other packages and servers to be sent to you by return
mail.

The material in this paper is available from the stringsearch package. The compo-
nents at the time of writing are

1242 A. HUME AND D. SUNDAY

index summary of what’s available
bmsrc test harness and all algorithms
bmdata Bible text and word list
bmct1 scripts to generate performance data
bmbio DNA text and word lists

Both bmdata and bmbio are large; bmsrc, bmct1, and bmdata are
cate the main performance measurements. For example, with netlib you
thing like

mail netlib@research.att.com

sufficient to repli-
would type some-

send bmsrc bmdata bmct1 from stringsearch

We have made the code and data sets available for two reasons. Firstly, having the source
for these algorithms conveniently available can only raise the standard of software that does
string searching. Some of the components, such as delta 2, are subtle and hard to implement
from scratch. (In fact, of the four versions of delta2 described in section 4.3.4, only Rytter
is correct and optimal.) Secondly, we would like to start a trend of publishing (electroni-
cally) sufficient information to allow someone other than the author(s) of a string search
paper to reproduce the results, or compare a new algorithm with an existing one on the same
test data.

7. DISCUSSION

The main reason theorists use a comparison count as the primary metric for comparing algo-
rithms is its independence of implementation or system details. For exactly the same rea-
son, if run speed is the primary metric, you must consider details of implementation and
evaluate ‘obviously’ inferior algorithms. For example, consider the straightforward SFC,
SFCM (doing SFC’S character search with memchr), and BM.ORIG (the classic Boyer-Moore
algorithm).

Algorithm Execution Speed (MB/s) Statistics
386 sparc mips vax 68k cray step cmp+jump

SFC 0.58 2.99 6.09 1.83 1.36 2.28 1.00 1041397 (104.1%)
SFCM 0.97 1.77 4.24 3.13 0.92 2.84 1 .00 1041397 (104.1%)

BM.ORIG 0.36 2.38 5.04 1.10 0.95 2.05 5.42 382579 (38.3%)

For all of the systems tested, SFC is faster than BM.ORIG despite doing three times as many
character comparisons. And, on 386 and vax, SFCM is nearly three times faster. Clearly,
the run time metric is unrelated to the character comparison metric.

We will compare the following algorithms in detail. They represent the better of the pre-
viously published algorithms together with our two new algorithms.

Algorithm skip loop match shift
BM.ORIG none rev d1ˆd2

QS none fwd sd1
BM.FAST fast rev d1ˆd2

TBM ufast fwd+g md2
LC lc fwd+g md2

Running our standard test on these algorithms gives

FAST STRING SEARCHING 1243

Algorithm Execution Speed (MB/s) Statistics
386 sparc mips vax 68k cray step cmp+jump

BM.ORIG 0.36 2.38 5.04 1.10 0.95 2.05 5.42 382579 (38.3%)
QS 0.79 4.16 8.51 2.62 2.03 3.59 6.24 172365 (17.2%)

BM.FAST 2.18 6.47 10.75 4.60 3.22 7.52 5.42 208169 (20.8%)
TBM 3.11 7.51 12.98 6.25 4.53 10.08 5.18 204199 (20.4%)

LC 2.45 7.54 13.10 6.31 4.57 10.06 5.16 204592 (20.5%)

Would this comparison change if the pattern length distribution is changed? Figure 4
shows the effect of the pattern length on each of the algorithms. Each test looked for 200
randomly selected words of the specified length. The test was run on just one system
(mips). Figure 5 reflects the same data but the performance is shown relative to BM.FAST.
Performance clearly improves as the pattern length increases, and the relative merits of the
different algorithms seem fairly constant within the normal usage patlen range. It is inter-
esting to note that the extremely simple QS algorithm runs slower than the algorithms with
skip loops despite making fewer references to text.

Various algorithms described above depend on the character frequency distribution for
text. For the experiments run above, the distribution used was perfect — measured directly
from text; but, in most applications, it will most likely be an estimate. For example, most of
the texts searched on our UNIX systems are either documents or program sources. One
could therefore take a representative sample and measure the frequencies from that sample.
It is therefore important to measure the sensitivity of these algorithm’s performance to the
accuracy of the character frequency distributions. We examined the results for TBM and LC
on the mips system for four different frequency distributions: (a) the distribution found in
text, (b) the inverse order of text, or l–(a), (c) distribution for 7.7MB of formatted manual
entries, and (d) distribution from 11.2MB of C program text. We would expect (a) to per-
form best, (b) to perform worst and (c) and (d) to fall in between. In fact, we found the per-
formance was almost independent of the distribution used. The following table shows the
maximum spread between the four distributions:

speed cmp+jump
TBM 1 .3% 1.3%
LC 1 .3% 1.1%

This is partially explained by our standard test which averages out the occasional real win-
ners (and less frequent losers). In any case, a pragmatic approach might be to have a fixed
frequency distribution and modify it on basis of a sample of text. This may not be worth-
while if textlen is small.

In this paper we have paid scant attention to long pattern strings. For long strings, say
greater than 30 characters, the influence of the various delta 2 shifts (including kmp, d2, sd2,
and gd2) dominates the other components. We can demonstrate this effect by a brief excur-
sion into a problem domain where long patterns are commonplace. We tested some of our
shift functions by searching for DNA patterns from 10 up to 250 characters long in a portion
of the GenBank DNA database; 25 the results are shown in Figure 6. These results differ
from the results above because of the length of the patterns, the structure (such as repeated
substrings) of the patterns, and the small alphabet (5 characters: actg and newline). We
complete our glance at long patterns by noting the tremendous speed of the gd2 shift; it
obviously merits further study.

1244 A. HUME AND D. SUNDAY

Execution Speed

MB/s

Pattern Length

Character Comparisons

Pattern Length

Figure 4. Absolute performance of the main algorithms

1245FAST STRING SEARCHING

Execution Speed

3 5 7 9 11 13

Pattern Length

Character Comparisons

3 5 7 9 11 13

Pattern Length

Figure 5. Performance of the main algorithms relative to BM.FAST

1246 A. HUME AND D. SUNDAY

o 50 100 150 200 250

Pattern Length

Character Comparisons

o 50 100 150 200 250

Pattern Length

Figure 6. Performance of shift functions in searching DNA strings

FAST STRING SEARCHING 1247

8. CONCLUSION

Much practical and theoretic work on string searching has used the Boyer-Moore algorithm
as the standard for comparison. Unfortunately, this work has largely ignored Boyer-
Moore’s alternative ‘fast loop’ form of their algorithm despite its better performance. We
have described TBM, a portable tuned descendant of the fast BM algorithm, and LC, a variant
that uses frequency distribution information. They perform about 47% fewer character com-
parisons and are from 2.6 to 8.6 (geometric mean of 4.5) times faster than classic BM and
from 12% to 43% (mean of 29%) faster than fast BM. These algorithms are so fast that for
many applications, such as the UNIX system tools grep and egrep, underlying system issues
such as I/O management are now the performance bottlenecks.

Despite the superiority of these two algorithms to Boyer-Moore, they are nevertheless
compromises designed for normal conditions. Different conditions or user needs may
require algorithms embodying different compromises. Rather than trying to anticipate every
possible set of needs, we have provided a framework for constructing algorithms based on
fast BM, consisting of a skip loop, a match algorithm, and a shift function, and a toolkit con-
taining several choices for each of these parts. This allows a user to systematically evaluate
the various components and build an algorithm best suited to the user’s application.

ACKNOWLEDGEMENTS

We’d like to thank the referees, Jon Bentley, Brian Kernighan and Stavros Macrakis for
their constructive comments. James Woods sparked Hume’s interest in the Boyer-Moore
algorithms in 1986 and Hume’s management, particularly Al Aho, has indulged his fixation
ever since.

REFERENCES

1. D. E. Knuth, J. H. Morris Jr, and V. R. Pratt, ‘Fast pattern matching in strings,’ SIAM J. Comput. 6, (2),
323–350 (1977).

2. R. S. Boyer and J. S. Moore, ‘A fast string searching algorithm,’ Carom. ACM 20, (10), 262–272(1977).

3. R. Cole, ‘Tight bounds on the complexity of the Boyer-Moore pattern matching algorithm,’ Technical
Report 512, Computer Science Dept, New York University (June 1990).

4. A. Apostolic and R. Giancarlo, ‘The Boyer-Moore-Galil string searching strategies revisited,’ SIAM J.
Comput. 15, (l), 98–105 (1986).

5. L. Colussi, Z. Galil, and R. Giancarlo, ‘The exact complexity of string matching,’ 31st Symposium an Foun-
dations of Computer Science I, 135–143, IEEE (October 22-24 1990).

6. R. N. Horspool, ‘Practical fast searching in strings,’ Software—Practice and Experience 10, (3), 501–506
(1980).

7. G. D. V. Smit, ‘A comparison of three string matching algorithms,’ Software—Practice and Experience 12,
(1), 57–66 (1982).

8. J. A. Woods, More pep for Boyer-Moore grep, Usenet netnews group net.unix (March 18 1986). Also
Usenet archive comp. sources. unix, Volume 4, egrep (March 1987).

9. A. Hume, ‘A tale of two greps,’ Software—Practice and Experience 18, (11), 1063–1072 (1988).

10. B. W. Kernighan and D. M. Ritchie, The C Programming Language, Prentice Hall, Englewood Cliffs, NJ,
1988.

11. G. Kowalski and A. Meltzer, ‘New multi-term high speed text search algorithms,’ First International Con-
ference on Computer Applications, 514–522, IEEE (June 20-22 1984).

1248 A. HUME AND D. SUNDAY

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

R. A. Baeza-Yates, ‘Improved string searching,’ Software-Practice and Experience 19, (3), 257–271
(1989).

D. M. Sunday, ‘A very fast substring search algorithm,’ Comm. ACM 33, (8), 132–142 (1990).

S. Macrakis (February 1991). Personal communication.

J. A. Woods, egrep, Usenet archive comp.sources.unix, Volume 4 (March 1987).

ANSI, Programming Language – C (X.?. 159-1989), American National Standards Institute, New York,
1989.

M. Haertel, GNU e?grep, Usenet archive comp.sources.unix, Volume 17 (February 1989).

M. Haertel (December 1990). Personal communication.

J. L. Bentley, Writing Efficient Programs, Prentice-Hall, Englewood Cliffs, N. J., 1982.

A. Matsumoto, On improving the Boyer-Moore string matching algorithm (October 1990). Personal com-
munication.

R. Schaback, ‘On the expected sublinearity of the Boyer-Moore algorithm,’ SIAM J. Comput. 17, (4),
648–658(1988).

W. Rytter, ‘A correct preprocessing algorithm for Boyer-Moore string searching,’ SIAM J. Computing 9,
509–512(1980).

R. Giancarlo (December 1990). Personal communication.

J. J. Dongarra and E. Grosse, ‘Distribution of mathematical software via electronic mail,’ Comm. ACM 30,
(5), 403–407 (1987).

H. S. Bilofsky and C. Burks, ‘The GenBank® genetic sequence data bank,’ Nucl. Acids Res. 16,
1861–1864(1988).

	Fast String Searching
	SUMMARY
	1. INTRODUCTION
	2. PROPERTIES OF STRING SEARCH ALGORITHMS
	3. TESTING METHODOLOGY
	4. A TAXONOMY
	4.1 Skip loops
	4.1.1 none
	4.1.2 sfc
	4.1.3 slfc
	4.1.4 fast
	4.1.5 ufast
	4.1.6 lc
	4.1.7 Summary

	4.2 Match Algorithms
	4.2.1 fwd
	4.2.2 rev
	4.2.3 om
	4.2.4 guard
	4.2.5 ms
	4.2.6 Summary

	4.3 Shift functions
	4.3.1 inc
	4.3.2 kmp
	4.3.3 dl
	4.3.4 d2
	4.3.5 d12
	4.3.6 sd1
	4.3.7 sd2
	4.3.8 md2
	4.3.9 gd2
	4.3.10 multiple
	4.3.11 Summary

	5. RECOMMENDED SEARCHING ALGORITHMS
	6. GETTING THE CODE
	7. DISCUSSION
	8. CONCLUSION
	ACKNOWLEDGEMENTS
	REFERENCES

